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The Quantile Matching (QM) algorithm described below is similar to that proposed in

Wang et al. (2009). The objective of the QM adjustments is to adjust the base series so

that the empirical distributions of all segments of the deseasonalized and detrended base

series match each other. The adjustment value depends on the empirical frequency of

the datum to be adjusted (i.e. it varies from one datum to another in the same segment,

depending on their corresponding empirical frequencies).

Let {Yi, i = 1, . . . , N} denote a data series observed at times t1 < · · · < ti < · · · < tN ,

which consists of the annual cycle Cm, a common linear trend component βti (β could

be zero), and identically distributed Gaussian random variations. Assuming that a list of

changepoints have been identified for series {Yi}, e.g. by using the PMFred or PMTred

algorithm of Wang (2008). Importantly, in the PMFred or PMTred algorithm, the annual

cycle, lag-1 autocorrelation, and linear trend of the base series were estimated in tandem

while accounting for all identified shifts (Wang 2008). One can subtract the estimated

annual cycle and linear trend component from series {Yi}, obtaining the deseasonalized

and detrended series {Zi = Yi−Ĉm−β̂ti}. In order to preserve the annual cycle and linear

trend component in the base series, this deseasonalized and detrended series {Zi} is then

used to estimate the empirical cumulative distribution function (ECDF) for each segment

of the base series and the adjustments needed to make the base series homogeneous. These

are detailed next.
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Let Mq denote the number of points at which the ECDF will be estimated. The

deseasonalized and detrended data in each segment is sorted in ascending order and then

divided into Mq ascending categories “equally” (to the extent possible). Let Zs(l) denote

the mean of the l-th category of the s-th segment of series {Zi}, and F (l) the upper bound

of the empirical cumulative frequency (ECF) of the data in the l-th category. In other

words, all the l-th category data fall within the percentile range (F (l − 1), F (l)]. The

following differences in the category mean are derived:

Ds(l) = ZS(l) − Zs(l) (l = 1, 2, ..., Mq)

where S denote the segment to which the other segments are to be adjusted (i.e. the base

segment). For Gaussian data, let F (0) = 0 and Ds(0) = Ds(1); also let F (Mq + 1) =

1 + 1/Mq and Ds(Mq + 1) = Ds(Mq) (these boundary conditions keep the adjustments

for the lowest and highest 50/Mq percent of data bounded, not to let them depart too

much from the mean adjustment for the corresponding category). Thus, for each segment

s, there are (Mq + 2) data points, (F (l) − 0.5/Mq, Ds(l)) for l = 0, 1, ..., Mq + 1 [here,

the subtraction of 0.5/Mq from the F (l) is to put the Ds(l) at the center ECF of the l-th

category, whose ECFs fall within the interval (F (l − 1), F (l)]]. As shown in Figure 1, a

natural cubic spline is then fitted to these (Mq +2) data points for each segment s [except

segment S, for which DS(l) ≡ 0], which will be used to derive the adjustments needed to

homogenize the series, as described next.

Let Fs(i) denote the empirical cumulative frequency of the ith datum in segment s of

series {Zi}. From the fitted spline, we can look up the difference that corresponds to the

frequency Fs(i) (i.e. use Fs(i) as the X-axis value in Figure 1 to look up the corresponding

Y-axis value). The difference Ds(i) is the amount that will be added to the ith datum in

segment s of series {Zi}, to adjust it to segment S. This spline interpolation is carried

out for each value in each segment except segment S. The resulting differences Ds(i) for

i = 1, 2, ..., N , are referred to as the QM adjustments. The QM adjusted base series is
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obtained by adding the annual cycle Ĉm and linear trend component β̂ti back to the QM

adjusted version of series {Zi}. Therefore, the trend component estimated for the base

series is preserved in the QM adjusted series, which is very important.

The number Mq here shall be determined so that the shortest segment in the series

has enough data in each of the Mq categories. Let Nmin denote the length of the shortest

segment in the series. In our software package, the actual choices of Mq value include any

integer between 1 and 20 inclusive; users can either set Mq = 0 to let the codes determine

the appropriate Mq value, or chose a Mq value from any integer between 1 to 20 (any

larger number will be replaced by 20 automatically). In order to ensure that even the

shortest segment has enough data in each category, a Mq value chosen by a user will be

replaced by the integer Nmin/5 (or Nmin/20 for daily data) if the chosen Mq is larger [this

ensures that there are at least 5 data (or 20 daily data) in each category for estimating the

categorical mean]. If the procedure results in Mq = 0 (meaning that there is not enough

data in the shortest segment for estimating QM adjustments), our codes re-set Mq = 1

to use one single adjustment value for all data in the same segment (i.e., the usual mean

adjustment). We do not recommend set Mq larger than 20, because the larger the Mq, the

fewer data available for estimating the ECDF and the mean between-segment differences

for each category, and hence the larger the sampling variability and uncertainty of the

estimates of adjustments. Also note that any Mq ≥ 2, the resulting adjustment varies

from one datum to another (e.g., when Mq = 2, not only two different adjustment values

are applied to the values in a segment, but each and every datum in a segment has its

own adjustment that corresponds to its empirical cumulative frequency), because of the

spline fit and interpolation described above.

Note that all quantile matching algorithms (e.g., Della-Marta and Wanner 2006, Trewin

and Trevitt 1996, and the one described above) try to line up the adjustments by empirical

frequencies, implicitly assuming that the frequency series are homogeneous. Thus, quan-
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tile matching algorithms would work well when the frequency series is homogeneous (e.g.

for continuous variables such as temperature data); but they will not work, could even

be problematic when a discontinuity is present in the frequency series of a discontinuous

variable such as daily precipitation amount.

Note that, as a result of applying the QM adjustments with Mq ≥ 2, the whole distri-

bution of the data, not only the mean, could be adjusted. When the PMFred or PMTred

algorithm is used without data transformation, the detection of shifts is done on the mean

only, which indicates that any shift that occurs in the variance or higher order statistic

without a significant shift in the mean may go undetected in this case.
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a. distribution of QM adjustments with Mq = 10
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b. distribution of QM adjustments with Mq = 20
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Figure 1. The F (l) ∼ Ds(l) re-

lationship for each segment that

needs to be adjusted (step lines)

and the corresponding fitted natu-

ral cubic splines (i.e., distribution

of the QM adjustments over empir-

ical cumulative frequency) for two

different Mq values.
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